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INTRODUCTORY PARAGRAPH 38 
 39 
Although deep learning algorithms show increasing promise for disease diagnosis, their use 40 
with rapid diagnostic tests performed in the field has not been extensively tested. Here, we 41 
use deep learning to classify images of rapid HIV tests acquired in rural South Africa. Using 42 
newly developed image capture protocols with the Samsung SM-P585 tablet, 60 43 
fieldworkers routinely collected images of HIV lateral-flow tests. From a library of 11,374 44 
images, deep learning algorithms were trained to classify tests as positive or negative. A 45 
pilot field study of the algorithms deployed as a mobile application demonstrated high levels 46 
of sensitivity (97.8%) and specificity (100%), compared to traditional visual interpretation by 47 
humans - experienced nurses and newly trained community health worker staff -  and 48 
reduced the number of false positives and false negatives. Our findings lay the foundations 49 
for a new paradigm of deep learning-enabled diagnostics in low- and middle-income 50 
countries, termed REASSURED diagnostics1, for Real-time connectivity, Ease of specimen 51 
collection, Affordable, Sensitive, Specific, User-friendly, Rapid, Equipment-free, and 52 
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Deliverable. Such diagnostics have the potential to provide a platform for workforce training, 53 
quality assurance, decision support, and mobile connectivity to inform disease control 54 
strategies, strengthen healthcare system efficiency, and improve patient outcomes and 55 
outbreak management of emerging infections.  56 
 57 
MAIN TEXT  58 

Rapid diagnostic tests (RDTs) save lives by informing case management, treatment, 59 
screening, disease control and elimination programmes1. Lateral flow tests are among the 60 
most common RDTs and hundreds of millions of these tests are performed worldwide each 61 
year. They have the potential to support near person testing and decentralised management 62 
of a range of clinically important diseases (including malaria, HIV, syphilis, tuberculosis, 63 
influenza and non-communicable diseases2), making it convenient for the end-user and 64 
more affordable for health systems3. RDT also present some issues, namely: errors in 65 
performing the test and interpreting the result4,5, quality control, and lack of electronic data 66 
capture records of the test and results within health systems and surveillance. Many of these 67 
would be overcome with the ‘R’ in REASSURED - the new criteria for an ideal test to reflect 68 
the importance of digital connectivity, coined by Peeling and coworkers1. The ‘R’ stands for 69 
‘real-time connectivity’ using mobile phone connected RDTs. To date there have been few 70 
peer reviewed studies or evaluations of the effectiveness of connected lateral flow tests at 71 
scale in populations in need in low- and middle-income countries.     72 

Recent studies that compare the human interpretation of a HIV RDT to various gold 73 
standards, such as Western Blot6–9, Enzyme Immunoassay7,9–11,  standardised test panels12 74 
or different HIV RDTs13–15, have highlighted the common issue of subjective interpretation of 75 
the test result, which can lead to incorrect diagnosis. User error (especially in the case of 76 
weak reactive lines) and inadequate supervision of testers were identified as prime factors 77 
for misinterpretation16. In a study of differently experienced users interpreting results of HIV 78 
RDTs by looking at pictures of tests17, the accuracy of interpretation varied between 80% 79 
and 97%. This highlights the importance of experience in reading the test, as well as the 80 
subjectivity involved in reading a weak test line. Evidence also suggests that some 81 
fieldworkers struggle to interpret RDTs because of colour blindness or short-sightedness.18 82 
Another study used photographs of HIV RDTs to quantify the subtle difference in tests with 83 
faint lines declared as True- or False-positive by a panel of human users19. While these were 84 
small-scale studies (N = 148 and 8, respectively), both highlighted the potential for 85 
photographs to improve quality control and decision-making. 86 
 87 
Deep learning algorithms, harnessing advances in large data sets and processing power, 88 
have recently shown the ability to exceed human performance in a plethora of visual 89 
tasks, including cell-based diagnostics20, interpreting dermatology21, ophthalmology22 and 90 
radiography images23, playing strategic games24, and in clinical medicine when used 91 
alongside appropriate guidelines25,26. While some studies are emerging looking at 92 
applying deep learning to the interpretation of RDT27,28, little is known about the ability of 93 
machine learning models to analyse field-acquired diagnostic test data, with concerns about 94 
the potential uniformity of images (e.g. focus, tilt), harsh environmental factors such as 95 
lighting, and the variety of test types. In addition, there is a general lack of large real-world 96 
datasets available to successfully train deep learning classifiers, particularly from low- and 97 
middle-income countries. Recent advances in consumer electronic devices and deep 98 
learning, have the potential to improve RDT quality assurance, staff training and 99 
connectivity, eventually supporting self-testing, such as HIV-self-testing, which has been 100 
shown to be cost-effective29, to appeal to young people30 and help reduce anxiety31.  101 
 102 
Mobile health (mHealth) approaches, which marry RDTs with widely available mobile 103 
phones, take advantage of inbuilt sensors (e.g. cameras) found in the phones, battery life, 104 
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processing power, screens to display results, and connectivity to send results to health 105 
databases. A recent field study has shown high levels of acceptability for a device 106 
sending HIV RDT results to online data bases in real-time32. An array of approaches have 107 
been piloted at small scales (N ≤ 283) and have shown good performance. However, 108 

most require a physical attachment, such as a dongle (92-100% sensitivity, 97-100% 109 
specificity)33, a cradle34, or a portable reader (97-98% sensitivity)35, which increases cost 110 
and complexity, and typically rely on simple image analysis software. 111 
 112 
We explore the potential of deep learning algorithms to classify field-based RDT images as 113 
either positive or negative, focusing on HIV as an exemplar, and piloting at scale in 114 
population ‘test beds’ in KwaZulu-Natal, typical of semi-rural settings in Sub-Saharan Africa. 115 
Figure 1 shows the concept of our deep learning-enabled REASSURED diagnostic system 116 
to capture and interpret RDT results. Our approach first involved building a large image 117 
library of field-acquired test images as training data set, optimising algorithms for high 118 
sensitivity and specificity, and then to deploy our classifier in a pilot study to assess its 119 
performance compared to traditional visual interpretation with a range of end users with 120 
varying levels of training.  121 
 122 
Our standard image collection protocol (Figure 2a) and library are described in the Methods 123 
section. In brief, 11,374 photographs of HIV RDT were captured by over 60 fieldworkers 124 
using Samsung tablets (SM-P585, 8Megapixel camera, f1/9, with autofocus capability). 125 
Embedding routine image collection into staff workflows was acceptable and feasible, and 126 
participant consent rate was 96%. We optimised our mHealth system for the two different 127 
HIV RDTs used in the study as part of routine household population surveillance. At first 128 
glance these RDTs appear similar but have different features and number of test lines. To 129 
reduce the number of variables, we cropped the images around the region of interest (ROI) 130 
(Figure 2b). Figure 2c shows a snapshot of the very diverse real-world field conditions where 131 
the images were captured (indoors, outdoors, in the shade and in direct sunlight). 132 
 133 
Each image was labelled (see Online Methods) according to the test result. Figure 3a details 134 
the number of images used to train classifiers to automatically read the result of HIV RDT 135 
images. The training process is described in the Online Methods section. In order to test the 136 
reproducibility of the process, we performed a 10-fold cross validation. As can be seen in 137 
Figure 3b, the average sensitivity (95.9% ±5.1 for type A, 98.7% ±1.7 for type B) and 138 
specificity (99.0% ±0.6 for type A, 99.8% ±0.2 for type B) achieved across the 10 folds was 139 
high and consistent for both types of HIV RDT. We therefore used all the available data to 140 
train a final classifier for each type of test, which were used in our field study. We 141 
investigated different common classification methods being used for clinical diagnostic 142 
(Support Vector Machine36 (SVM) and Convolutional Neural Networks (CNN)) including 3 143 
different CNN architectures (ResNet5037, MobileNetV238,39 and MobileNetV340), and found 144 
MobileNetV2 was the most appropriate for our task, as can be seen in Figure 3c. 145 
 146 
We then conducted a field pilot study in rural South Africa to assess the performance of our 147 
mHealth system compared to visual interpretation with a range of end-users with varying 148 
levels of training (see Online Methods). Five participants (2 nurses, 3 newly trained 149 
community healthworkers) were each asked to give their interpretation of 40 HIV RDTs and 150 
to acquire a photograph of the RDT via the app. All five participants (100%) were able to use 151 
our mHealth system without training, demonstrating its feasibility and acceptability. The 152 
photographs were then evaluated by an expert RDT interpreter, followed by our deep 153 
learning algorithms on a secure server. The results were not fed back to the study 154 
participants to avoid confirmation bias. The performance results can be seen in Figure 4. 155 
 156 
When comparing the traditional visual interpretation of the RDTs, we observed varied levels 157 
of agreement between participants, (61-100%)  as can be seen in Figure 4a. As expected, 158 
agreement between nurses (N1 & N2: 100% and 94.4% agreement for test types A and B 159 



 4 

respectively) was greater than between newly trained community health workers (C1, C2 & 160 
C3: 80-90% and 61.1-94.4% for test types A and B, respectively). Test type B showed the 161 
lower level of agreement. The low level of agreement between participants, and variability 162 
due to the type of HIV RDT, were of concern and highlighted the need for a more objective 163 
and consistent method to interpret HIV RDTs in the field. The confusion matrices in Figure 164 
4b, demonstrate our mHealth system reduced the number of errors in reading RDTs. The 165 
number of False Positive results from our mHealth system was found to be significantly 166 
lower than for the traditional visual interpretation (0 compared to 11 – the largest variation 167 
being observed for community health workers, 10), which translates as an improvement in 168 
specificity from 89% to 100%, and an improvement in Positive Predictive Value from 88.7% 169 
to 100%. Similarly, the number of False Negative results was just two in our mHealth 170 
system, compared to four in traditional visual interpretation, which translates as an 171 
improvement in sensitivity from 95.6% to 97.8%, and an improvement in Negative Predictive 172 
Value from 95.7% to 98%. We plotted the ratio of our mHealth system performance to the 173 
participant performance, both for sensitivity and specificity (Figure 4c). All participants had a 174 
sensitivity index equal or greater than one for test type A; four out of five participants (N1, 175 
N2, C1, C2) also did for test type B, demonstrating our mHealth system was better than 176 
those participants at reading positive test results. Our system was also more reliable at 177 
reading negative tests, as all participants had a specificity index equal or greater than one 178 
for both types of HIV RDTs.  179 
 180 
We acknowledge the following limitations of our study. Firstly, our pilot study involved a 181 
relatively small number of participants (five), although we note this is comparable to other 182 
similar pilot studies reported in the field. In future, larger evaluation studies and clinical trials 183 
are needed to assess the performance of the system, involving participants with a broader 184 
range of demographics including age, gender and different levels of digital literacy, as well 185 
as more expert readers. In addition, future studies would benefit from including an invalid 186 
test classifier and different mobile phone types with varying camera specifications. The 187 
images were analysed on a secure server, however, future analysis could be on-device 188 
overcoming the need to upload images. We are also currently investigating a picture 189 
segmentation approach using deep learning for the next iteration of the smartphone 190 
application. 191 
 192 
To conclude, we demonstrated the potential of deep learning to accurately classify RDT 193 
images, with an overall performance of 98.9% accuracy, significantly higher than traditional 194 
visual interpretation of study partipants (92.1%), which are comparable with reports of 80-195 
97% accuracy17. Given that over 100 million HIV tests are performed annually, even a small 196 
improvement in quality assurance could impact the lives of millions of people by reducing the 197 
risk of false positives and negatives. To the best of our knowledge our real-world image 198 
library is the first of its kind at this scale and we demonstrate that deep learning models can 199 
be deployed in mobile devices in the field, without the need for cradles, dongles or other 200 
attachments. It lays the foundation for deep learning enabled REASSURED diagnostics, 201 
demonstrating that RDTs linked to a mobile device could standardise capture and 202 
interpretation of test results for decision-makers, reducing interpretation and transcription 203 
errors and workforce training. Our findings are based on HIV testing decision support for 204 
fieldworkers, nurses and community health workers, but in future could be applicable to 205 
decision support for self-testing. We focused on HIV as an exemplar, but the capacity of the 206 
classifier to adapt to two different test types suggests that it is amenable to a large range of 207 
RDTs spanning communicable and non-communicable diseases. This platform could be 208 
utilised for workforce training, quality assurance, decision support, and mobile connectivity to 209 
inform disease control strategies, strengthen healthcare systems efficiency, and improve 210 
patient outcomes, and outbreak management. The ideal connected system would link to 211 
connected RDTs to laboratory systems, whereby remote monitoring of RDT functionality and 212 
utilisation could also allow health programmes to optimise testing deployment and supply 213 
management to deliver the Sustainable Development Goals and ensure no one is left 214 
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behind. The real-time alerting capability of connected RDTs could also support public health 215 
outbreak management, by mapping ‘hotspots’ for epidemics including COVID-19 to protect 216 
populations.  217 
 218 
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FIGURE LEGENDS 355 
 356 
Figure 1: Infographic to illustrate the benefits of data capture to support field 357 
decisions. In blue, the current workflow used by fieldworkers. In orange, our proposed 358 
mHealth system of automated RDT classifier plus data capture and transmission to a secure 359 
mHealth database. In green, the benefits arising from deploying the proposed system. The 360 
black rectangle represents a tablet or smartphone. 361 
 362 
Figure 2: Standardisation of image capture, image pre-processing and training library. 363 
a) Fieldworker capturing a photograph of two HIV RDTs at the time of interpretation, in the 364 
field in rural South Africa (photo credit: Africa Health Research Institute). The two HIV RDTs 365 
are fitted in a plastic tray designed to standardise image capture and facilitate image pre-366 
processing. b) Interpretation process,  starting from the original picture of HIV RDTs used 367 
during the study, pre-processing to select the region of interest (ROI), then interpretation of 368 
the test result. If two lines (control + test) are present on the paper strip at the time of 369 
interpretation, the test result is positive. Note: for the ABON HIV RDT, one or two different 370 
test lines can appear (T1 and T2) depending on the type of HIV infection (HIV-1 and HIV-2, 371 
respectively). The test result is positive regardless of which test line is present, or if both test 372 
lines are present on the paer strip at the time of interpretation. If only the top line (control) is 373 
present, the test is negative. If no control line can be seen, the test is deemed invalid. c) 374 
Snapshot of the image library of HIV RDTs collected in the field in rural South Africa (162 375 
randomly selected images out of 11374), illustrating the diversity of the colour, background 376 
and brightness. 377 
 378 
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Figure 3: Algorithm training and performance. a) Table showing the number of images in 379 
the training library, divided in two labels categories (‘positive’ and ‘negative’) as well as two 380 
sub-categories corresponding to the test type. b) Table to summarise the training process 381 
using cross-validation, with a training set of N = 3998 (test type A) and N = 6221 (test type 382 
B). The sensitivity and specificity were obtained using a hold-out testing dataset of N = 445 383 
(test type A) and N = 693 (test type B). c) Barplots showing the average performance 384 
(sensitivity and specificity) of 4 classification methods trained on our dataset, using cross 385 
validation (the error bars represent the standard devidation from the mean). The three CNN 386 
pretrained on the ImageNet dataset (ResNet50, MobileNetV2 and MobileNetV3) were 387 
retrained and tested using our dataset. The SVM was trained using features extracted by 388 
Histogram of Oriented Gradients. All four classifiers were trained using the same training set 389 
described in panel b). The sensitivity and specificity were obtained using the hold-out testing 390 
dataset described in panel b). 391 
 392 
Figure 4. Performance evaluation of our mHealth system compared to traditional 393 
visual interpretation, field pilot study. a) Graphics showing the agreement (%) between 394 
pairs of study participants, when asked to interpret HIV RDTs results using traditional visual 395 
interpretation. Participants are divided between experienced nurses (N1, N2) and community 396 
health workers (C1, C2, C3). For each pair of participants, the number of HIV RDTs was N = 397 
38. The observations are separated according to the two types of HIV RDTs used in the 398 
study. The purple square on both graphics highlights the agreement between the two 399 
experienced nurses, while the orange polygon highlights the agreement between the three 400 
pairs of community health workers. b) Confusion matrices showing the number of True 401 
Negative, False Positive, False Negative and True Positive results, when comparing the 402 
interpretation of our mHealth system (top row) and traditional visual interpretation (bottom 403 
row) to the groundtruth. Red matrices on the left include the results for all study participants, 404 
which are broken down into experienced nurses (orange matrices) and community health 405 
workers (purple matrices). c) Barplots showing the performance index for individual 406 
participants. Participants are divided between experienced nurses (N1, N2) and Community 407 
health workers (C1, C2, C3). The performance index is the ratio of the performance of our 408 
mHealth system over that of traditional visual interpretation. A performance index greater (or 409 
equal) to one indicates our mHealth system performed better than (or as well as) traditional 410 
visual interpretation. The observations are separated according to the two types of HIV 411 
RDTs used in the study. 412 
 413 
METHODS 414 
 415 
Ethics 416 
 417 
Ethical approval for the demographic surveillance study was granted by the Biomedical 418 
Research Ethics Committee of the University of KwaZulu-Natal, South Africa, Reference 419 
Number BE435/17. Separate informed consent is required for the main household survey, 420 
for the HIV sero-survey, the HIV point of care test and the photographs of the HIV test. 421 
 422 
Ethical approval for the collection of human blood samples used in the pilot study was 423 
granted by the Biomedical Research Ethics Committee of the University of KwaZulu-Natal, 424 
South Africa, Reference Number BFCJ 11/18.   425 
 426 
Recruitment of participants to AHRI Population Implementation Platform for the image library 427 
 428 
Eligible participants are all individuals age 15 years and older resident within the geographic 429 
boundaries of the AHRI population intervention programme surveillance area (Cohort profile: 430 
Africa Centre demographic information system (ACDIS) and population-based HIV survey. 431 
International journal of epidemiology. 2007 Nov 12;37(5):956-62.). Individuals who have died 432 
or outmigrated prior to the surveillance visit are no longer eligible. There are three contact 433 
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attempts by the fieldworker team and a further three contact attempts by a tracking team 434 
before the individual is considered to be uncontactable. All individuals in the study gave 435 
informed consent. Specifically, all contacted eligible individuals who gave informed consent 436 
for this study were offered a rapid HIV test if they were not currently on anti-retroviral 437 
therapy. For children under the age of 18, written consent for Rapid HIV testing was 438 
obtained for the parent or guardian and assent from the participant. 439 
 440 
HIV RDT Image library collection 441 
 442 
The original RDT images library was collected in rural South Africa by a team of 60 443 
fieldworkers (between 2017 and 2019). AHRI fieldworkers survey a population of 170,000 444 
people in rural KwaZulu-Natal. Participants were visited at their home, those giving informed 445 
consent were tested for HIV using a combination of two HIV RDTs, and upon further 446 
consent, a picture of their two HIV RDTs  was captured by the fieldworker on a tablet at the 447 
time of interpretation. Both HIV RDTs were used as part of routine demographic surveillance 448 
in Africa Health Research Institute. The test type continued to change during this study 449 
following recommendations by the South African government, exemplifying the need for 450 
robust systems to read multiple test formats. 451 
 452 
While the two HIV RDTs used in this study have their own instructions for use (see 453 
manufacturer’s instructions), they all generally follow the same principle of collecting a drop 454 
of blood from the participant’s fingertip, delivering that drop of blood to the sample pad and 455 
using a drop of chase buffer to help the blood sample flow through the length of the paper 456 
strip. The result (a combination of one or two lines appearing on the paper strip) is then read 457 
out after a period of 10 to 40 min, depending on the type of HIV RDT used.  458 
 459 
In order to least disturb the fieldworker’s workflow, a plastic tray designed to hold both HIV 460 
RDT was given to each fieldworker. A picture of the tray can be seen in Figure 2a. This 461 
ensured the fieldworkers only had to capture one picture per participant. The tasks of 462 
separating the two HIV RDT and isolating the ROI used to train the classifier were 463 
conducted down the line as part of data pre-processing. 464 
 465 
A standard operating procedure (SOP) on how to capture the image was co-created and 466 
optimised with the team of fieldworkers. A copy of the SOP can be found in the Extended 467 
Data section (Extended Data Figure 1). The SOP was designed to minimise the impact of 468 
environmental factors, as well as to ensure a standard way of capturing the pictures. All 469 
fieldworkers attended a two-day initial training programme during which the objectives of the 470 
data collection and design of the plastic tray were clearly explained, and each fieldworker 471 
was personally trained and given feedback on how to capture valid photographs. A training 472 
protocol was also established, in order to ensure newly enrolled fieldworkers who did not 473 
attend the initial training session could also be trained to capture pictures for the project. 474 
Finally, picture quality assessment sessions were conducted in order to give the fieldworkers 475 
team feedback, and to ensure most pictures were of high enough quality to be used for 476 
training the classifier. 477 
 478 
All pictures were captured using Samsung tablets (SM-P585, 8MPixels camera, f1/9, with 479 
autofocus capability) using the native Android camera application, stored on the device until 480 
the end of the day when they were transferred to a secure database at AHRI. Our mHealth 481 
system only allows one picture per test and per participant to be saved to the tablet and 482 
uploaded to the AHRI database. After anonymisation (including stripping geo-coordinates 483 
from the picture EXIF data), batches of 2000-3000 pictures were securely transferred to UCL 484 
team members on a quarterly basis, and stored securely in a ‘Data Safe Haven’ managed by 485 
the university. 486 
 487 



 10 

Both the feasibility (93%) and acceptability (98%) of the system used to capture the HIV 488 
RDTs pictures were high, according to a survey taken by the fieldworkers involved in the 489 
study. 490 
 491 
For the purpose of this study, an initial batch of 11, 374 images were used. As only very few 492 
invalid results were obtained from the field, it was decided, for the purpose of this proof of 493 
concept study, to focus on training the classifier to distinguish between positive and negative 494 
results. In order to optimise this task, the ROI around each HIV RDT was isolated and used 495 
to train the classifier. 496 
 497 
Image labelling 498 
 499 
All pre-processed images were labelled by a group of three RDT experts (99.2% agreement 500 
with fieldworkers labelling). Labelling is the process of sorting the images into categories, 501 
which are then used to train the classifier. The categories chosen here correspond to the 502 
possibilities for the HIV RDT result, i.e. ‘positive’ and ‘negative’. We recognise that a third 503 
outcome, ‘invalid’, is also possible and needs to be considered when using the system to 504 
provide a confident diagnostic. However, the absence of invalid test results in our library of 505 
images collected by fieldworkers did not allow us to train the classifier on this third category 506 
in this study. We therefore focused the training on the two main categories (‘positive’ and 507 
‘negative’), and are exploring other ways to incorporate the ‘invalid’ outcome in our mHealth 508 
system. This could mean either using data augmentation techniques on the low numbers of 509 
invalid test results images, or adding a pre-processing step to detect the presence of a 510 
control line on the image before deciding to feed it (or not, in case the control line is absent) 511 
to the classifier. 512 
 513 
Training library 514 
 515 
The labelled images were divided into two sub-categories corresponding to the HIV RDT 516 
type. The two types of tests in our library are:  517 
•Type A: ABON™ HIV 1/2/O Tri-Line Human Immunodeficiency Virus Rapid Test Device 518 
(Whole Blood/Serum/Plasma) (ABON Biopharm (Hangzhou) Co.,Ltd) 519 
• Type B: ADVANCED QUALITY™ ONE STEP Anti-HIV (1&2) Test (InTec PRODUCTS, 520 
INC) 521 
 522 
While there are two tests per patient, herein in this study we treat each test individually since 523 
the tests are from different manufacturers and therefore could respond differently to the 524 
same blood sample. The collection system design also guaranteed that there was never 525 
more than one image of a given test per participant. 526 
 527 
Image normalisation 528 
 529 
Before being used for training, each image was resized to the dimensions of the input layer 530 
then standardised. Standardisation of the data was performed using equation (1) below, 531 
where  𝑥𝑠 is the standardised pixel value, 𝑥𝑜 the original pixel value, 𝜇 and 𝜎 are the mean 532 
and standard deviation of all pixels in the image, respectively. 533 
 534 
 535 

𝑥𝑠 =
𝑥𝑜−𝜇

𝜎
 Equation (1) 536 

 537 
Cross-validation 538 
 539 
Each dataset (one for each type of HIV RDT) was randomly divided into 10 equal folds. 540 
Using the leave-one-out method, 10 classifiers were trained using nine folds as the training 541 
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set (further randomly divided into 80% training and 20% validation). To account for 542 
imbalanced datasets (roughly 13:1 negative:positive ratio), we forced every batch during 543 
training to contain 50% positive images and 50% negative images using random sampling. 544 
Each model was then optimised by creating a ROC curve using the validation set. This 545 
yielded an optimal threshold which was used to evaluate the model performance model on 546 
the testing set (remaining 10th fold). The deployment models were obtained by retraining 547 
using all the available data, for each type of HIV RDT. All training and evaluation were 548 
conducted using the scikit-learn and Tensorflow libraries in Python. 549 
 550 
Comparison with established classification methods 551 
 552 
The SVM was trained using pre-processed features extracted using Histogram of Oriented 553 
Gradients (HOG), with Principal Component Analysis used to filter out less significant 554 
features. The three CNN (ResNet50, MobileNetV2 and MobileNetV3) were pre-trained using 555 
the ImageNet dataset, and re-trained using our dataset. For all four methods, training and 556 
evaluation was conducted using the scikit-learn and Tensorflow libraries in Python. 557 
 558 
 559 
Android application 560 
 561 
We developed a smartphone/tablet Android application designed for end-users to capture a 562 
picture of their HIV RDT, at the time of reading the test result. Together with end users, we 563 
optimised the design so as to maximise the simplicity of the process, in order to make our 564 
mHealth system accessible to end users with a broad range of digital literacy. All that is 565 
required from the end user is to roughly align a semi-transparent template of the HIV RDT 566 
with their HIV RDT and press a button to capture a picture. Cropping around the ROI was 567 
then performed automatically in the background (using the pixel coordinates of the template 568 
overlay), as was the process of sending the ROI to our classifier and receiving our mHealth 569 
system’s result. For the purpose of this pilot study, participants were not made aware of our 570 
mHealth system’s interpretation of the test results, so as to avoid bias for their own 571 
interpretation. Screenshots of the application can be found in the Extended Data section 572 
(Extended Data Figure 2). 573 
 574 
Field pilot study protocol 575 
 576 
The Android application was deployed in a field pilot study in KwaZulu Natal, South Africa. 577 
Five participants were randomly selected from the staff at AHRI – two experienced nurses 578 
and three community healthworkers. 40 HIV RDT (20 of type A, 20 of type B) were 579 
performed following manufacter’s guidelines using discarded anonymised human blood 580 
samples (10 positive, 10 negative according to ELISA). For each of the 40 HIV RDTs, each 581 
participant was asked to record their visual interpretation of the test result, then use our 582 
mHealth system on a tablet to capture a photograph of the HIV RDT. The system consisted 583 
of our Android app (described above), installed on a single Samsung SM-P585 tablet, 584 
identical to the ones used by fieldworkers for data collection. Participants were not shown 585 
the automated interpretation of the test result provided by our mHealth system in order to 586 
avoid confirmation bias. The field pilot study took place at the AHRI rural site at the heart of 587 
the community (Mtubatuba, KwaZulu-Natal), under lighting conditions identical to the ones 588 
the mHealth system is intended to be used. A short (10 minutes) demonstration on how to 589 
use the smartphone application was given to all participants, who were then left on their own 590 
to proceed with the task of reading the HIV RDTs and capturing pictures. 591 
 592 
Field pilot study data analysis 593 
 594 
The data analysis consisted of the comparison of three datasets: 595 
 596 
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i) Traditional visual interpretation by study participants 597 
ii) Independent expert interpretation of the images captured by study participants 598 
iii) Automated machine learning interpretation by our classifier 599 

 600 
Traditional visual interpretaiton was recorded on the tablet by each study participant 601 
immediately after being shown the HIV RDTs. Only two of the 40 HIV RDTs (corresponding 602 
to 10 images out of 200) had to be discarded from the analysis, as one participant took a 603 
photograph of the wrong HIV RDTs and it was therefore not possible to compare 604 
interpretation results across all five participants. 605 
 606 
An independent RDT expert subsequently visually interpreted all 190 HIV RDTs images. The 607 
independent RDT expert had significant experience conducting performance evaluations of 608 
lateral flow rapid tests for ocular and genital Chlamydia trachomatis in The Phillippines, The 609 
Gambia and Senegal. The visual interpretation occurred 1-5 hours after sample addition. 610 
The independent expert certified that none of the HIV RDT results had changed during this 611 
time frame. 612 
 613 
The automated machine learning interpretation by our classifiers occurred on our secured 614 
server. The results were compared to traditional visual interpretation and the independent 615 
RDT expert, shown in the confusion matrices in Figure 4, then analysed using the 616 
performance indicators described below. 617 
 618 
Performance indicators 619 
 620 
The four indicators of performance investigated were sensitivity, specificity, positive 621 
predictive value (PPV) and negative predicitve value (NPV). For each image, the classifier 622 
produces an outcome that belongs to either of the four categories: True Positive (TP), True 623 
Negative (TN), False Positive (FP) and False Negative (FN). Whether the outcome is True 624 
or False depends on the comparison with the gold standard chosen. 625 
 626 
The sensitivity is the ability of the classifier to correctly detect a positive result, by measuring 627 

the ratio 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , while the specificity is the ratio 

𝑇𝑁

𝑇𝑁+𝐹𝑃
 and translates the ability of the 628 

classifier to correctly detect a negative result. The PPV is the ratio 
𝑇𝑃

𝑇𝑃+𝐹𝑃
  , the NPV is the 629 

ratio 
𝑇𝑁

𝑇𝑁+𝐹𝑁
 . They indicate the proportion of positive and negative results (respecitvely) by a 630 

diagnostic test that are true positves and true negatives (respectively). 631 
 632 
Data availability 633 
 634 
The datasets generated during and/or analysed during the current study are available from 635 
the AHRI data repository:  636 
Herbst, K., & McKendry, R. (2019). m-Africa: Building mobile phone-connected diagnostics 637 
and online care pathways for optimal delivery of population HIV testing, prevention and care 638 
in decentralised settings (Version 1) [Data set]. Africa Health Research Institute (AHRI). 639 
https://doi.org/10.23664/AHRI.M-AFRICA.2019.V1 640 
 641 
Code availability 642 
 643 
Custom code used in this study is available on the public repository: 644 
https://xip.uclb.com/product/classify_ai 645 
 646 

https://doi.org/10.23664/AHRI.M-AFRICA.2019.V1
https://xip.uclb.com/product/classify_ai

